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A theory of X-ray energy flow in an ideally perfect crystal is developed based upon the ordinary 
dynamical theory of diffraction in a more practical form. The following topics are discussed: the 
spatial intensity profile of a reflected and transmitted beam, and L. C. Brown's experiments on the 
behavior of a transmitted beam which satisfies the Bragg condition. (Thesis, :Florida State Univer- 
sity, 1952). Agreement between theory and experiment is fairly good. It  is pointed out that an 
intensity enhancement at the margins of a diffracted beam can be explained in terms of a diffraction 
effect. 

1. I n t r o d u c t i o n  

In order to understand the diffraction phenomena of 
X-ray waves in ideally perfect crystals we have to 
consider the behavior of energy flow in such crystals. 
Several experiments (Cork, 1932; Murdock, 1934; 
Borrmann, 1950; Borrmann et al., 1955) show that 
X-ray energy flows mainly in a direction parallel to 
the reflecting net plane, in sufficiently thick crystals. 
Theoretical studies (Kato, 1952; v. Laue, 1952, 1953; 
Niehrs, 1956; Kato, 1958; Ewald, 1958; Wagner, 1959) 
also have been carried out on this problem and the 
above experimental results have been explained qual- 
itatively. I t  seems, however, that  the theories pre- 
sented hitherto have been concerned mainly with 
fundamentals and have not been developed in a form 
convenient to compare with experimental data. In 
addition some interesting experiments recently re- 
ported have not yet received a proper explanation. In 
this paper the author presents a more detailed theory 
of the energy flow in ideally perfect crystals and 
compares it with the available experimental results. 
A detailed discussion is given of the spatial intensity 
profiles of the diffracted and the transmitted beam, 
i.e. the intensity profiles of cross-sections of these 
beams. Also discussed are the experiments of L.C. 
Brown (1952) on the lateral displacement of the trans- 
mitted beam and on rocking curves of a selected part 
of the transmitted beam. 

This paper does not consider 'PendellSsung' inter- 
ference phenomena at all. Actually, the 'hook-shaped' 
fringes reported by Kato & Lang (1959) show that  the 
ordinary theories should be modified to some extent. 
The present theory is unsatisfactory for understanding 
such diffraction phenomena. Nevertheless it seems 
worth-while to present the theory in this form because 
a simple treatment described here may be applied to 
some problems in which we are concerned only with an 
intensity averaged over a 'PendellSsung' period. In 
addition, the present theory will serve for comparing 

the usual theories with a revised theory which will be 
presented in the near future (Kato, in preparation). 

2. T ransmis s ion  power and  r e f l e c t i o n  power 

(A) General considerations 
According to the dynamical theory of diffraction, 

four plane waves are produced in a crystal when an 
incident wave satisfies the Bragg condition for a par- 
ticular net plane. Their wave vectors may be written 
D(1) O, D(2) O, D(1) G and D(~) G. Here D(1) and D(2) are 
dispersion points (wave points), each of which corre- 
sponds to one of the branches of the dispersion surface 
(cf. Fig. 1). 0 and G are the origin and a lattice point 
of the reciprocal lattice respectively. The former two 
vectors correspond to a transmitted beam and the 
latter two correspond to a reflected beam. 
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Fig. 1. Dispersion points and dispersion surface. 

As to the energy flow, the D(t) O-wave and D(t)G- 
wave combine together and go through the crystal in 
a particular direction. This direction is the normal of 
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the  dispersion surface at D(X). In  the same way the 
D(~) O-wave and  D(2) G-wave combine and go through 
the crystal  in the direction of the normal  at D(2). 

The points  D(~) and D(2) are determined by boundary  
conditions at  the entrance surface and by the angular  
devia t ion of the incident  beam from the Bragg angle, 
i.e. 'Anregungsfehler. '  This m a y  be easily understood 
through the following geometrical  construction. In  
Fig. 1, L is a point  on the Laue circle, i.e. on the 
intersect ion of two spheres of radius K=2~r/X (~= 
wavelength) drawn with 0 and G as their  centers, 
respectively.* E is the  wave-point  of the incident  beam 
and therefore the angle EOL measures the angular  
deviat ion from the precise Bragg condition. If  the 
crystal  surface is sufficiently large, the tangent ia l  
component  of the wave vector of the incident  plane 
wave mus t  be equal  to tha t  of the induced crystal 
waves. Therefore the dispersion points D(~) and D(2) 
are determined by  the intersection of the dispersion 
surface wi th  a line paral lel  to n~ passing through E, 
where n~ is a uni t  vector normal  to the incident  surface. 

If  we change the glancing angle from a sufficiently 
small  angle to a sufficiently large angle, the direction 
of the energy flow of the D(~)O- and D~)G-waves 
changes from the direction of K0 to tha t  of Kg, and the 
direction of energy flow of the D(2)O- and D(~)G- 
waves changes from Kg to K0. Here K 0 is the wave 
vector of an  incident  beam which satisfies the Bragg 
condition precisely and Kg is K 0 + 2 ~ g ,  ( g =  OG). 

After  arr iving at  the back surface of the crystal  each 
energy flow splits into a diffracted beam and a trans- 
mi t ted  beam which t ravel  outside the crystal. The 
wave points of the external  beams are A and E respec- 

t ive ly  if we assume a parallel-s~clecl crystal sla~. ~ 

in the direction of E O  and two also in the direction 
of AG,  these directions corresponding to those of the 
t ransmi t t ed  and diffracted beams, respectively. Fig. 2 
shows the situation. 

(B) Theory 
According to Laue 's  t r ea tmen t  (1952),%he Poynt ing  

vector in ideal ly  perfect crystals can be expressed 
s imply  if i t  is averaged ovdr t ime and over a space 
covering a region larger t han  a period of 'PendellSsung'  
interference. His result  is as follows: 

S(~) = k(~)lD(~)12 + k(i)lD(~) 2, (1) g g 

(i = 1 and 2) 

where S (i) is an averaged Poynt ing  vector, k~ i) and 
k(g i) are the wave vector of a t ransmission and reflection 
wave in the crystal,  respectively, and D(o i) and D(g i) are 
their  ampli tudes.  The vectors k(j) and k(~ i) are equal 

* For simplicity we neglect the effect of the mean value of 
polarizability, in the X-ray case, or of inner potential, in the 
electron case. The more general situation is described in Fig. 1 
of the author's earlier paper (J. Phys. Soc. Jap. 7 (1952) 397). 
Also, we consider the incident X-rays to be plane-polarized. 

to K0 and Kg, to a sufficiently good approximat ion,  
so long as we are concerned with the Poynt ing  vector. 
The ampli tudes  ID~oi)r 2 and ID~)J 2 are calculated from 
the ordinary theory as follows: 

[D(01)j,, " = .1 + 2y2+ 2y(1 + y2!½ 
4(1 + y~) 

× exp [-ttot+2A(y.+yg)/(1 +ye)½] 

!D(~2)[2 = 1 + 2y2,2_y_(_l ÷y2)½ 
4 ( 1 + y  2) 

× exp [ -  ttot-2A(y,+yg)/(1 +y2)½] 
(2) 

b 
[n(gi)12 = 

4 ( l ÷ y  2) 

x exp [ -  ~tot+2A(z+yg)/(1 +y~)½] 

b 
IDCe)12 -- 4(1 +y2) 

x exp [ -  t~ot-2A(z+yg)/(1 +y2)½]. 

Here the notat ion is the same as tha t  used in Zacharia- 
sen (1945) by which b is very near ly  the ratio of the 
direction cosines of the incident and diffracted waves 
(Zaeh. [3.115]) and y is the 'Anregungsfehler '  (defined 
by Zach. [3.114b], [3.123] and [3.141]). For convenience 
we introduce a parameter  

x=y/(1 + y2)½. (3) 

If we define the t ransmission power p~i) by the 
ratio of the t ransmi t ted  energy of the (/)-wave to the 
energy of the incident  wave, and the reflection power 
p~i) by the ratio of the reflected e n e r ~  of the (i/-wav¢ 

to the incident energy, they  m a y  be wri t ten as follows : 

p(ol ) Go = ~ (1 + x) °- 

× exp [ -/xot + 2A Z(1 - x2)½ + 2Agx] 

p(o2 ) = Go ~- (1-z)~ 

× exp [ - / ~ 0 t -  2A X(1 - x2)½ - 2Agx] 
(4) 

p l) = bGg 
4 

× exp [ - #ot + 2A ;~(1 - x2)½ + 2Agx] 

p~z) = bGg ( l - x 2 )  
4 

x exp [ -  # 0 t -  2Ax(1 -x2)½ -2Agx] ,  

where G O and Gg are geometrical factors arising from 
change of the beam width. They are wri t ten as follows : 

Go = cos (s.n~) cos (k0.n~) / 
cos (k0.n~-)" cos (S.na) 

Gg = c°--s-(s--:-!le--) • cos (kg.na) [ (4') 

cos (k0.n~) cos (s.n~) 
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where n a  is the uni t  vector of the normal  of the exit 
surface. 

Fig. 2. Di f f rac ted  b e a m  (R) and  t r a n s m i t t e d  beam (T) 
due  to  a single crysta l .  

In  Fig. 2, we consider an  angle O between a direction 
S (i) and the net  plane concerned. From equation (1) 
this m a y  be expressed as follows, 

tan 0 = ID~)i2 -ID~)I2 tan OB. (5) 
ID~)I~ + In~)12 

Therefore, if we introduce a geometrical parameter  

p = t an  O/ tan  08,  

the relations between x and p are 

and 

b(1-x ) - ( l+x)  I P = b(1-x)+(l+x) for the (1)-wave 

b ( l + x ) - ( I - x )  
P = b(l+x)+(1-x)  for the (2)-wave. 

1"0 X~(1) ~,.£~ I I I 

0"5 
"o" .cb 

,o,,~ 

'o ,,o.,~ 

- 0 "5  
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0 - "  

p = tan O~tan 0 6 

Fig. 3. Re la t ion  be tween  x and  p. 
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If b is near ly  equal to 1, 

x=-p+½(1-p2)c for the (1)-wave I 

and x =  p + ½ ( 1 - p 2 ) c  for the (2)-wave, 

where c=b-1,  [cl ~ 1. 

(7') 

(S) 

In  the symmetr ica l  Laue case, i.e. b--1,  i t  is clear 
tha t  x--+_p, and P(~) and p(i) c a n  be expressed in 
terms of the parameter  p instead of x in equat ion (4). 
Relat ions between x and p in general cases are shown 
in Fig. 3. 

3. Spatial intensity profiles of the transmitted 
and reflected beam 

(A) Theoretical spatial intensity profiles 
As explained in § 2(A), if an incident  beam were 

ideal ly paral lel  and  monochromatized and also its cross 
section small  enough, we might  be able to observe 
separately two t r ansmi t t ed  beams and two reflected 
beams. Actually,  it  is not easy to obta in  such an 
incident  beam with sufficient intensi ty,  so tha t  no 
exper imenta l  evidence of such a separat ion has yet  
been obtained. Here, however, we consider the more 
feasible exper imenta l  condition tha t  the incident  beam 
has an angular  width  of some extent  bu t  is sufficiently 
narrow in cross section. Under  this condition, various 
plane waves occur in the crystal  s imultaneously.  We 
assume tha t  there is no phase relat ion between them. 
We have a t r ansmi t t ed  and diffracted beam of a 
definite width  as shown in Fig. 2. 

The in tens i ty  dis t r ibut ion along the axes of the co- 
ordinates ~ and ~ in Fig. 2 can be expressed as follows: 

5E0 5E0 dy dx 5p I 
Io(~)= 5 ~ -  (~y dx dp 5~ I 

(SEg (~Eg dy dx (~p [ (9) 

Ig(~) = (5~ - 5y dx dp 5~' J 
where ~E 0 and ~Eg are the total  energies of a trans- 
mi t ted  and a reflected beam which pass through an 
in terval  (~ and ~ respectively. 

Io(~) (and Ig(~)) are each composed of two waves, 
(1) and (2), which are produced by incident  beams 
having different  angles of incidence. Equa t ion  (7) 
shows, however, tha t  the relations between x and p 
for wave (2) can be obtained from those for wave (1) 
just  by  changing the sign of x, and vice versa. There- 
fore, if we denote the energy of an incident  beam in 
the angular  range from y to y +  5y as Ie(y)~y, 

/du\l / \ d x  ~p 

(i0) 

zg(~/={Ze(y/PP)(x/+z~(-Y)Pf)(-x/} ~ ~ ~ '  

(11) 
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where y and x are the values corresponding to a value 
of the geometrical parameter p of the wave (1) ac- 
cording to equations (3) and (7). From equation (3), 
dy/dx is easily obtained. If we notice the general 
situation tha t  a direction of energy flow S(0 is per- 
pendicular to the dispersion surface, we can obtain 

d x  $p dx 
I dP ( ~ )  and ~ [ ( ~ )  

in a simple form as shown in Appendix B. 
Thus we can obtain all other factors in equation (10) 

except for the unknown quant i ty  Ie (y). To obtain a 
theoretical intensity profile we have to make some 
assumptions about the intensity distribution of the 
incident beam. Actually the Bragg relation is satisfied 
only when the deviation of the incident beam from 
the Bragg angle is less than several seconds of arc at 
most. Since this angular range is very small, it is 
reasonable to assume that  

Ie(y)=Ie(const.) lYl <y0 
( 1 2 )  

= 0 ]y] > y0, 

where y0 is a constant corresponding to t h e  angular 
width of the incident beam. Using this assumption 
equation (9) becomes, in the symmetrical Laue case 
for a parallel-sided crystal of thickness to, 

I e  1 - -p  
Io(p) - 2 to sin 08 (1 _p2)½ (1 +p)  

× cosh 2A X (1 - p~)½ exp - t~0to 
(13) 

I~  1 

Ig(p) - 2 to sin 08 (1 _p2)½ 

× cosh 2Az(1 _p2)½ exp -/z0to. 

In the general case we may not be able to use the 
assumption (12). If we consider the ratio Ig/Io, how- 
ever, we can always eliminate an arbi t rary form of 
the function Ie(y). From equations (4), (10), (11) and 
(B8a, b), 

Ig cos (k0n~) 1 - x 1 cos (k0n~) 1 + p 
- =  - . ( 1 4 )  
I 0 cos (kgnai 1 + x b cos (kgna) 1 - p 

This result is quite general and does not depend upon 
absorption, net plane, and the intensity distribution 
of the incident beam. 

(B) Comparison between theory and experiment 
Fig. 4 shows examples of theoretical spatial intensity 

profiles according to equation (13). In the diffraction 
beam the intensity increases at  the margins of the 
profile in the case of thin crystals. This may seem 
curious at first sight because the X-rays flow in the 
direction of p _~ 0 when the Bragg condition is satisfied 
exactly. I t  is, however, understandable if we consider 
the fact tha t  changes of p due to angular changes of 
the incident beam are so rapid in the vicinity of p _~ 0 

(of. equation (3)) tha t  most of the energy of the in- 
cident beam flows in directions close to the margins 
of the profile.* In a transmission beam, however, 
the intensity decreases in a monotonic way as one 
approaches the margin nearer to the diffracted beam, 
in the thin crystal case. 

i z,.O j i ' ' / Reflection 
'~ Beam i 

2"0 

4"0 

3"C 

2.I2 

o ~  / , . , -, - , ~  
+1 0 -1 +1 

p = tan e/tan 8 o 
(o) 

Transmission 
Beam / 

~t = 0/ 

#t= 

/ 

0 - -  

p = tan O/tan OB 
(b) 

Fig. 4. Theoret ical  spatial  in tens i ty  profiles of a reflection 
beam (a) and a t ransmission beam (b), in the  symmet r i ca l  
Laue  case. 

In  thicker crystals the intensity at  the margins 
decreases markedly for both diffracted and t ransmit ted 
beams but the central part  does not decrease by more 
than half the value for a non-absorbing crystal. This 
is essentially due to the Borrmann effect. 

These theoretical predictions agree fairly well with 
experimental results. Fig. 7 of the previous paper 
(Kate & Lang, 1959) shows a pair of section pat terns 
due to a diffracted beam and a t ransmit ted beam. t 
We observe a high intensity at  the margins of the 
diffracted beam in the thin part  of the crystal and also 
a decrease of the margin intensity as crystal thickness 
increases. 

I t  seems worth-while here to mention an observed 
intensity enhancement at  the margins of a diffracted 
beam in the case of neutron diffraction (Knowles, 
1956). In his case the specimen (calcite) might have 
been almost perfect because the Borrmann effect was 
observed strongly by using X-ray diffraction. There- 
fore his observations may probably be explained by 
the margin effect described above. 

In fact, this kind of observation in X-ray Laue pho- 
tographs has been reported already by a few authors 

* This s i tuat ion was pointed out  by  Bor rmarm et al. (1955) 
qual i ta t ively.  They  did no t  predict ,  however ,  an ac tual  
in tens i ty  e n h a n c e m e n t  a t  the  margins :  their  calculat ions were  
main ly  concerned with  th ick  crystals.  

t Here  we are concerned only wi th  averaged  in tens i ty  
dis tr ibut ions t aken  over  'Pendell6sung'  fringes. 
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(Cork, 1932; 5{urdock, 1934) and also in transmission 
spectrographs (Du Mond & Bollmann, 1936). In most 
cases it was explained by a mosaic state of the crystal 
surfaces (for example James, 1948; Armstrong, 1946). 
Some of the investigators, however, examined care- 
fully the surfaces of the crystals by the Bragg reflec- 
tion method and could not find any indication of im- 
perfection. Cork, in particular, pointed out that  new 
theoretical considerations were necessary to explain 
this phenomenon. 

If the intensity enhancement at the margins is due 
to surface damage, the intensity of the transmitted 
beam should increase also at the margin nearer to the 
diffracted beam. Since there is no such enhancement in 
Fig. 7(b) of the previous paper (Kato & Lang, 1959) 
we may conclude that  the intensity enhancement at 
the margins of the diffracted beam has to be explained 
by a diffraction effect of a perfect crystal. 

4. Experiments  of L. C. Brown 

In his work* (Brown, 1952) the beam width was rather 
large (about 1 mm.) but it was collimated well by two 
perfect calcite crystals. I t  is of interest to discuss his 
results here because the character of his incident beam 
was just complementary to that  employed in the 
intensity profile experiments described in the preced- 
ing section. 

(A) Displacement of the transmitted beam 
He measured the position of both edges of the trans- 

mitted beam and measured their displacement when 
the incident beam satisfies the Bragg condition exactly. 
His results are summarized in Table 1 which is based 
upon Fig. 11 of the paper (B). 

Table 1. Displacement of edges of transmitted beam 

Displacement (mm.) 
Thickness . ~ ..... . 
t o (ram.) Near side Far side Calc. 

1.45 0.08 0.03 0.17 
2.56 0-3 0.2 0.3 

As explained in § 2, when the Bragg condition is 
satisfied exactly (y=0), it is expected that  both 
beam (1) and (2) propagate in a direction of p= 
( b -  1)/(b+ 1). In his experiments b ~ 1. Therefore the 
displacement of the edge is estimated as 

/1 } _~ to sin 0B . (15) 

The calculated values are shown in Table 1. The 
displacement should be the same for both sides of the 
beam. 

Even though the displacement itself is explained 
qualitatively, agreement between the theoretical and 
experimental values is not satisfactory. This discrep- 

* Hereafter we refer to his paper by (B). 

A C 13 -- 24 

ancy, however, may be explained to some extent as 
follows. Since the incident beam has a small angular 
width despite good collimation, some parts of it do 
not satisfy the Bragg condition exactly. As explained 
in § 2, these beams flow in a direction nearer either to 
K 0 or Kg. In thin crystals the transmitted beams which 
flow to the K0-side are much stronger than the beams 
which flow to the Kg-side. Therefore the resultant 
beam might be expected to be shifted to the K0-side 
compared with the case of ideal collimation. With 
increasing crystal thickness only the (1)-wave can 
penetrate through the crystal, and it flows in the direc- 
tion of p_~ 0, so that  we can expect that  the displace- 
ment becomes closer to the theoretical value. This 
trend is noticed in Brown's experimental results. 

(B) _Rocking curve due to a selected beam 
Brown obtained rocking curves due to a selected 

reflection beam A and selected transmission beams 
B, C, D and E which are illustrated in Fig. 5 (Fig. 10 
of the paper (B)). His results are shown in :Fig. 6 
(Fig. 12 of the paper (B)). Due to the geometrical 
configuration the slit E excludes the transmitted beam 
which flows in a direction p >  0 and some parts of 
the beam which flows in a direction p < 0. Similarly 
the slit B excludes some parts of the beam p < 0 .  
This means that  the effective slit width depends upon 

j , u  

$ 

/ 

i I ~ 

;i;I-1;r;i  
A B C  D 5 

Fig. 5. Geometry of diffracted beams. 
(Reproduction of Fig. 10 of the paper (B)). 
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Fig. 6. Rocking curves at various points in beam cross section. 
(Reproduction of Fig. 12 of the paper (B)). 

the  glancing angle of the incident  beam. Thus the 
rooking curves of the t ransmi t t ed  beam should be 
expressed as 

T (y) = ID(oZ)l 2 W (x) + ID(?)I ~ W (~), (16) 

where D(o are given by  equat ion (2) and W(O are the 
effective slit widths for the (/)-waves specified as 
funct ion of parameter  y. The slit width  can be wri t ten 
on the p-scale as follows, in accord with the experi- 
menta l  conditions 

Case B: 

Case E" 

W(o -- 1 (p > 0) 
= l + p  ( p < O )  

(]7) 
W(O = 0 (p > 0) 

= - p  ( p < 0 ) .  

Using equations (3) and (7') W(O(y) are easily obtained. 

AN IDEALLY PERFECT CRYSTAL 

I t  is obvious tha t  W (0 are equal  to 1 for the cases 
C and D. 

Calculated rocking curves are shown in Fig. 7. In  
good agreement  with Brown's  exper imenta l  results, 
the  theoretical  curve for slit B shows an almost  sym- 
metr ical  peak whose m a x i m u m  is shifted a l i t t le to 
the smaller-angle side. The rocking curve for slit E 
has a form similar  to the curve for slits C and  D, 
though the peak is f la t tened so tha t  its m a x i m u m  value 
is around half  of the m a x i m u m  value in the  C and  D 
cases. 

5. Discussion 
As explained in the preceding sections, most  of the  
exper imenta l  results obtained hi ther to  can be ex- 
pla ined fair ly  well by  the present  theory.  This k ind  of 
s tudy  seems to be impor tan t  from two s tandpoints :  
studies of wave dynamics  in a perfect crystal  and 
studies on perfectness of real crystals. 

Usual ly  studies of wave dynamics  in crystals are 
carried out by  measuring the ordinary rocking curves 
and integrated intensit ies of reflection. Exper iments  
which are per t inent  to energy flow, however, give us 
another  aspect of wave dynamics  in crystals. Consider, 
for example,  spatial  in tens i ty  profile studies. Under  
reasonable exper imental  conditions it  is not  so difficult  
to measure the in tens i ty  profile of a diffracted and  a 
t ransmi t ted  beam for every increment  of 0.1 in p. 
Rela t ing these to the corresponding y values shows 
tha t  a spatial  l ine profile s tudy  corresponds to a de- 
tai led measurement  of the central  region ([y[ _~0) of 
the usual  single crystal  reflection curve. 

If  the crystals are different from the ideally perfect 
state assumed in deriving equat ion (2), the experimen- 
ta l  results should be different from the results ex- 
pected from the above theory. In  ideally mosaic 
crystals, for example,  i t  is evident  tha t  the line profile 
of the reflected beam has a rectangular  form and  tha t  
of t ransmi t ted  beams has an appreciable value only in 
the direction of K 0. 

As explained in the introduction,  however, the  

0"4 I I I I I I I I I j I I 1 I I I I I I 

I C, D 
Rocking curve due to 
a selected beam 

0"S 

0"2 

0-1 __..j . 
' \ \  

. . . .  ] i " ' P - - - 4 _ _ _ L  i 0 ] I I I I "I I " - "  "I __ I I I I 
- 8  - 6  - 4  - 2  0 2 4 6 8 

- - - ~ y  

Fig. 7. Calculated rocking curves. 
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present theory is rather  primitive. I t  seems necessary 
to develop the theory in such a way tha t  it can be 
applied to 'PendellSsung' phenomena. In addition it 
seems desirable to s tudy experimentally the line 
profiles of reflected and t ransmit ted beams from 
perfect crystals in more detail, because such a s tudy 
must  show us to what extent  the present theory can 
be applied to the real wave-dynamical situation in 
crystals. 

A P P E N D I X  A 

Energy  f low in absorbing  crysta ls  

In  an absorbing crystal, the wave v e c t o r  k(o i) is com- 
plex. Since its imaginary part  is determined by the 
real part,  wave bundles are constructed through the 
integration over the dispersion surface determined by 
the real part  of k~ 0, using the same procedures as in 
a non-absorbing crystal (Kato, 1952; Ewald, 1958). 
Moreover, adopting an approximation taking into 
account the first  order effects of Z=  I~v~'[/IW~l in the 
meaning used in Zachariasen (1945), the real part  of 
k~) does not change due to absorption. Therefore, the 
direction of wave bundle propagation must be normal 
to the dispersion surface determined by the real par t  
of k~). 

The same results are expected also according to 
Laue's approach to this problem (Laue, 1952, 1953). 
In an electromagnetic field as well as a material field 
the real part  of a Poynting vector S (i) and a current 
vector j(o have the meaning of energy flow (cf. for 
example, Strat ton,  1941; Schiff, 1948). As explained 
above, the real part  of k(~ ) and, accordingly, k(g 0 are 
the same for both cases of non-absorbing and absorbing 
crystals. In  addition, the absorption factor of (i)- 
waves is common for [D~i)] 2 and ID(gi)l 2 as shown in 
equation (2). Thus, from equation (1) S (i) and j(o are 
the same for an absorbing and a non-absorbing crys- 
tal, as far as their directions are concerned. 

A P P E N D I X  B 

Geometr i ca l  m e a n i n g  of 
dx/dp(Op/O~) and dx/dp(Op[dri) 

A crystal wave vector k 0 corresponding to the incident 
wave vector K can be expressed as 

KS0 
k 0 = K -~ ne (B 1 ) 

cos (k0n~) 

(cf. [3.90] of Zachariasen's text  book*) where K is the 
magnitude of K, 1 + ~0 is the refractive index of k 0, 
ne is the inward-drawn normal of the incident surface 
and cos (k0, n~) is the cosine of the angle between 
k 0 and n~. The quant i ty  ~o can be expressed by 

* H e r e a f t e r  we will ci te the  e q u a t i o n s  of his t e x t b o o k  as 
[Z3.90.]. 

24* 

80 = ½{Y~0- z ± (z2 +q) ½} (B2) 

according to equation [Z3.121]. As shown in Appendix 
A, it is sufficient to consider the real par t  of 6o if we 
are concerned with the direction of energy flow. 
K can also be expressed approximately 

K_~ K 0 + (0B-- 0 )Kx ,  (B3) 

where K 0 is the vector K which satisfies the Bragg 
condition exactly and x is a unit  vector perpendicular 
to K 0 in a plane including the K 0 and g vectors. 

Using the relation tha t  a variation of k 0 along the 
dispersion surface is perpendicular to the corresponding 
Poynting vector S, we obtain the following relation, 
by differentiation of equation (B1) 

(S .x)  cos(kgne) (S.ne) { y } 
sin 20B COS (k0ne) + ½ cos -(-k~e) - 1 ± (1 + y2)½ = 0 .  

(B4) 

In deriving this we use relations such as [Z3.116], 
[Z3.123] and [Z3.141] between 0, y and z. Thus, from 
equation (3) 

2 cos (kant) (S .x)  
T x =  sin20B ( S . n ~ ) - - l "  (B5) 

From the geometrical relation between S, O and 
as shown in Fig. 2, we get 

I ~x ] 2 c°s (kgn~) c°s (k°n~) dO (B6) 
= sin20B COS 2 (Sne) ds ~ " 

On the other hand we find 

to~O cos (Sna) 
-- ~ ,  (B7) 

cos (Sne) cos (k0n~) 

where O is the angle between S and the net plane, 
n~ is a unit  vector perpendicular to the exit surface 
and t o is the distance from the incident surface of a 
point on the exit surface corresponding to an observa- 
tion point ~. Thus finally we obtain 

,~x I 1 cos(k0n~) cos (Sna)2cos (kgn¢)  
]1-~ = to cos (Sne) cos (k0na) sin 20B 

1 2cos(kgne) 1 
= to sin20B "G O" (B8a) 

Similarly, we obtain 

t ~x 1 cos (k0ne) cos (Sna) 2 cos (kane) 
= to cos (Sne) cos (kgna) sin 20B 

1 2COS (kgne) 1 
= to sin20B "G--~g" (B8b) 
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Kiessling (1950) invest igated the  Mn/B system and 
described a number  of manganese  borides ranging in 
composit ion from Mn4B to MnaB ~. Specimens were pre- 

Table 1. Powder diffraction data: MnB 2 
(Filtered Cu K radiation) 

d (h) I / I  o HKL 
3.O3 25 001 
2-60 85 100 
1.975 100 101 
1.517 8 002 
1.503 25 110 

1.347 13 111 
1.311 15 102 
1.302 8 200 
1-196 20 201 
1.068 18 112 

0.984 10 202/210 
0.943 10 103 
0.936 15 211 
O.868 8 3OO 
0.839 5 113 

0-834 5 301 
0.826 12 212 
0.799 10 203 

pared by heat ing mixtures  of meta l  and boron in evac- 
ua ted  silica tubes at l l00-1200 °C. No evidence was 
found for the  existence of MnB 2 or other  phases with 
higher boron content .  We have also been unable to pre- 
pare the  diboride under  the conditions described above. 
However,  MnB 2 is formed readily when the reaction 
tempera ture  is raised to 1400-1500 °C. The product  
often contains considerable Mn3B 4 in addi t ion to the  
diboride. Relat ively pure diboride can be prepared con- 
venient ly  by using 3 to 4 or more parts  of boron to one 
of manganese in the  reaction mix ture  and then  removing 
the  excess boron from the product  by flotation. No lines 
due to Mn.~B 4, or other phases, were detected in heavily 
exposed X-ray diffraction pat terns  of specimens prepared 
in this way. 

MnB 2 has the  AIB 2 type structure;  it is isomorphous 
with TiB 2, VB2, CrB2, and other t ransi t ion meta l  di- 
borides. The uni t  cell is hexagonal  with a=3-007 and 
c=3.037 A, both  +0.002 /~. Powder  diffraction data,  
obtained with a diffractometer using filtered Cu radiation, 
are listed in Table 1. 
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